Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

M.Sc.(IT)/MCA/PGDCA (2019 Batch) (Sem.-1)

MATHEMATICS

Subject Code: PGCA-1901 M.Code: 76971

Time: 3 Hrs.

Max. Marks: 70

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying TEN marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Solve the following:

a) Perform indicated operation $\frac{3-2/3}{5+5/6}$

b) Solve
$$\frac{3\sqrt{2} - 4\sqrt{3}}{4\sqrt{2} + 3\sqrt{3}}$$

- c) Write the solution set of the equation $2x^2 + 3x 2 = 0$ in roster form.
- d) If R is the set of real numbers and Q is the set of rational numbers, then what is R Q?
- e) Write the subsets of the set $\{a, b\}$.
- f) Find negation of "At least 10 inches of rain fell today in Mumbai"
- g) Show that $a \wedge b = b \wedge a$.
- h) Find components of the statement "The number 100 is divisible by 3, 11 and 5".
- i) Define Transpose and Scalar matrices

j) Evaluate
$$\begin{bmatrix} 1 & -3 & 5 & 1 \\ 4 & 6 & 0 & 3 \\ 8 & -2 & 3 & 0 \end{bmatrix}$$

SECTION-B

- 2. a) Expand $(1+\sqrt{2})(3-\sqrt{2})$.
 - b) Simplify $\sqrt[3]{12}.\sqrt[3]{36} + \frac{4 \sqrt{3}}{5\sqrt{3}}$.
- 3. a) Define Natural number, Real numbers and Irrational numbers with examples.
 - b) If $X = \{a, b, c, d\}$ and $Y = \{f, b, d, g\}$, find (i) X Y, (ii) Y X, (iii) $X \cap Y$.
- 4. a) Show that $(A \cap B)^c = A^c \cup B^c$.
 - b) Which of the following sets are equal?

A =
$$\{x : x^2 - 4x + 3 = 0\}$$
, B = $\{x : x \in \mathbb{N}, x < 3\}$, C = $\{x : x \in \mathbb{N}, x \text{ is odd } < 5\}$

- 5. a) Show that $(A \cup B) (A \cap B) = (A B) \cup (B A)$.
 - b) Determine which of the following statement is true or false.
 - i) $A \cup P(A) = A$
 - ii) A P(A) = A
 - iii) $A \cap P(A) = A$
 - iv) $\{A\} \cap P(A) = A$

SECTION-C

- 6. a) Show that $\sim (p \vee q)$ and $\sim p \wedge \sim q$ are equivalent.
 - b) Use truth table to prove $\sim (p \lor q) \equiv (\sim p \land \sim q)$.
- 7. a) Show that $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$ are not equivalent.
 - b) Determine whether $(\sim q \land (p \rightarrow q)) \rightarrow \sim p$ is a tautology.

8. a) If
$$A = \begin{bmatrix} 1 & 5 \\ 7 & 12 \end{bmatrix}$$
 and $B = \begin{bmatrix} 9 & 1 \\ 7 & 8 \end{bmatrix}$, find matrix C such that $3A + 5B + 2C$ is null matrix.

b) Show that matrix addition is commutative i.e. A + B = B + A, where A and B and mxn matrices.

9. a) Find value of x such that
$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$$
.

b) Show that if
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
, and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find k so that $A^2 = 8A + kI$.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.