Dal			
	al No. of Questiens : 09		D. OT Pages : UZ
101	B.Tech.(CSE/IOT/AI&ML/DS/ including Block Cf MAT	Internet of Things and Cyb hain Technology) (Sem.– HEMATICS-III	per Security 3)
	Subject C M.(Data of Exa	Code : BTAM304-18 Code : 76438	CO.
Tim	e : 3 Hrs.	Initiation : 23-12-2023	Max. Marks : 60
INS 1. 2. 3.	TRUCTIONS TO CANDIDATES : SECTION-A is COMPULSORY co each. SECTION-B contains FIVE ques have to attempt any FOUR quest SECTION-C contains THREE qu have to attempt any TWO questi	onsisting of TEN questions car stions carrying FIVE marks ea tions. nestions carrying TEN marks e ions.	rrying TWO marks ach and students ach and students
	5	SECTION-A	
1.	Solve the following : a) State Fuler's theorem		
	b) If $z = \log (x^2 + xy + y^2)$, Prove t	that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2.$	
	c) State Gauss Test		
	d) State Cauchy's root teste) Test the convergence of the ser	tries $\sum \frac{(-1)^{n-1}}{n}$	
	f) Evaluate $\int_{1}^{2} \int_{1}^{3} dx dy$		
	g) Evaluate $x \frac{dy}{dx} - y - 2x^3 = 0$		
2	h) Evaluate $\frac{dy}{dx} + \frac{y}{x^2} = x, (x > 0)$		
	() 0 1 () () 1)		
1	1) Solve $(y - xp)(p - 1) = p$		

SECTION-B

2. If
$$V = r^m$$
 where $r^2 = x^2 + y^2 + z^2$, show that $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = m(m+1)r^{m-2}$.

3. Test the convergence or divergence of the series

$$\frac{2}{1^2}x + \frac{3^2x^2}{2^3} + \frac{4^3x^3}{3^4} + \dots - \infty.$$

- 4. Solve the differential equation $(3xy^2 y^3) dx (2x^2y xy^2) dy = 0$.
- 5. Change the order of integration and hence evaluate $\int_0^\infty \int_0^x x e^{\frac{-x^2}{y}} dy dx$.
- 6. Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y =$

SECTION-C

- 7. The temperature 'T' at any point (x, y, z) in space $400xyz^2$. Find the highest temperature on surface of unit $x^2 + y^2 + z^2 = 1$.
- 8. a) Solve $y 2px = \tan^{-1}(xp^2)$
 - b) Evaluate $\frac{dy}{dx} \frac{dx}{dy} = \frac{x}{y}$

9. Solve the differential equation $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + y = \frac{\log x \sin(\log x) + 1}{x}$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.